Cell-Penetrating Peptides—Mechanisms of Cellular Uptake and Generation of Delivery Systems

نویسندگان

  • Sara Trabulo
  • Ana Luísa Cardoso
  • Miguel Mano
  • Maria C. Pedroso de Lima
چکیده

The successful clinical application of nucleic acid-based therapeutic strategies has been limited by the poor delivery efficiency achieved by existing vectors. The development of alternative delivery systems for improved biological activity is, therefore, mandatory. Since the seminal observations two decades ago that the Tat protein, and derived peptides, can translocate across biological membranes, cell-penetrating peptides (CPPs) have been considered one of the most promising tools to improve non-invasive cellular delivery of therapeutic molecules. Despite extensive research on the use of CPPs for this purpose, the exact mechanisms underlying their cellular uptake and that of peptide conjugates remain controversial. Over the last years, our research group has been focused on the S413-PV cell-penetrating peptide, a prototype of this class of peptides that results from the combination of 13-amino-acid cell penetrating sequence derived from the Dermaseptin S4 peptide with the SV40 large T antigen nuclear localization signal. By performing an extensive biophysical and biochemical characterization of this peptide and its analogs, we have gained important insights into the mechanisms governing the interaction of CPPs with cells and their translocation across biological membranes. More recently, we have started to explore this peptide for the intracellular delivery of nucleic acids (plasmid DNA, siRNA and oligonucleotides). In this review we discuss the current knowledge of the mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the S413-PV peptide, and the potential of peptide-based formulations to mediate nucleic acid delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell penetrating and transytosing peptides: powerful strategies for oral insulin delivery

 Insulin is essential for type 1 and advanced type 2 diabetes to maintain blood glucose levels and increase the patient’s longevity. Frequent subcutaneous insulin injections are usually associated with pain, local tissue necrosis, infection and nerve damage. Recently, a number of new delivery methods such as oral insulin delivery have been developed to overcome these limitations and increase pa...

متن کامل

Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line

Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...

متن کامل

Cell-penetrating peptides: from cell cultures to in vivo applications.

The field of gene therapy is starting to move towards clinical applications but is currently limited by the lack of efficient delivery systems. Cell-penetrating peptides provide a means of cellular delivery for gene therapy applications as well as delivery of traditional drugs. Using cell-penetrating peptides a range of different cargoes have been successfully delivered into a number of cell ty...

متن کامل

Cell-penetrating peptides and oligonucleotides: Design, uptake and therapeutic applications

Regulation of biological processes through the use of genetic elements is a central part of biological research and also holds great promise for future therapeutic applications. Oligonucleotides comprise a class of versatile biomolecules capable of modulating gene regulation. Gene therapy, the concept of introducing genetic elements in order to treat disease, presents a promising therapeutic st...

متن کامل

Spatio-temporal control of cellular uptake achieved by photoswitchable cell-penetrating peptides.

The selective uptake of compounds into specific cells of interest is a major objective in cell biology and drug delivery. By incorporation of a novel, thermostable azobenzene moiety we generated peptides that can be switched optically between an inactive state and an active, cell-penetrating state with excellent spatio-temporal control.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010